Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Rev Med Virol ; : e2373, 2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2281466

RESUMEN

The SARS-CoV-2 omicron variant (B.1.1.529) was first identified in Botswana and South Africa, and its emergence has been associated with a steep increase in the number of SARS-CoV-2 infections. The omicron variant has subsequently spread very rapidly across the world, resulting in the World Health Organization classification as a variant of concern on 26 November 2021. Since its emergence, great efforts have been made by research groups around the world that have rapidly responded to fill our gaps in knowledge for this novel variant. A growing body of data has demonstrated that the omicron variant shows high transmissibility, robust binding to human angiotensin-converting enzyme 2 receptor, attenuated viral replication, and causes less severe disease in COVID-19 patients. Further, the variant has high environmental stability, high resistance against most therapeutic antibodies, and partial escape neutralisation by antibodies from convalescent patients or vaccinated individuals. With the pandemic ongoing, there is a need for the distillation of literature from primary research into an accessible format for the community. In this review, we summarise the key discoveries related to the SARS-CoV-2 omicron variant, highlighting the gaps in knowledge that guide the field's ongoing and future work.

2.
Microbiol Spectr ; : e0245722, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: covidwho-2223596

RESUMEN

Since its emergence in late 2019, the coronavirus disease 2019 (COVID-19) pandemic has caused severe disruption to key aspects of human life globally and highlighted the need for timely, adaptive, and accessible pandemic response strategies. Here, we introduce the cell-free dot blot (CFDB) method, a practical and ultra-low-cost immune diagnostic platform capable of rapid response and mass immunity screening for the current and future pandemics. Similar in mechanism to the widely used enzyme-linked immunosorbent assays (ELISAs), our method is novel and advantageous in that (i) it uses linear DNA to produce the target viral antigen fused to a SpyTag peptide in a cell-free expression system without the need for traditional cloning and antigen purification, (ii) it uses SpyCatcher2-Apex2, an Escherichia coli-produced peroxidase conjugate as a universal secondary detection reagent, obviating the need for commercial or sophisticated enzyme conjugates, and (iii) sera are spotted directly on a nitrocellulose membrane, enabling a simple "dipping" mechanism for downstream incubation and washing steps, as opposed to individual processing of wells in a multiwell plate. To demonstrate the utility of our method, we performed CFDB to detect anti-severe acute respiratory syndrome coronavirus 2 nucleocapsid protein antibodies in precharacterized human sera (23 negative and 36 positive for COVID-19) and hamster sera (16 negative and 36 positive for COVID-19), including independent testing at a collaborating laboratory, and we show assay performance comparable to that of conventional ELISAs. At a similar capacity to 96-well plate ELISA kits, one CFDB assay costs only ~$3 USD. We believe that CFDB can become a valuable pandemic response tool for adaptive and accessible sero-surveillance in human and animal populations. IMPORTANCE The recent COVID-19 pandemic has highlighted the need for diagnostic platforms that are rapidly adaptable, affordable, and accessible globally, especially for low-resource settings. To address this need, we describe the development and functional validation of a novel immunoassay technique termed the cell-free dot blot (CFDB) method. Based on the principles of cell-free synthetic biology and alternative dot blotting procedures, our CFDB immunoassay is designed to provide for timely, practical, and low-cost responses to existing and emerging public health threats, such as the COVID-19 pandemic, at a similar throughput and comparable performance as conventional ELISAs. Notably, the molecular detection reagents used in CFDB can be produced rapidly in-house, using established protocols and basic laboratory infrastructure, minimizing reliance on strained commercial reagents. In addition, the materials and imaging instruments required for CFDB are the same as those used for common Western blotting experiments, further expanding the reach of CFDB in decentralized facilities.

3.
ACS Infect Dis ; 8(9): 1758-1814, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1984356

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and virulent human-infecting coronavirus that emerged in late December 2019 in Wuhan, China, causing a respiratory disease called coronavirus disease 2019 (COVID-19), which has massively impacted global public health and caused widespread disruption to daily life. The crisis caused by COVID-19 has mobilized scientists and public health authorities across the world to rapidly improve our knowledge about this devastating disease, shedding light on its management and control, and spawned the development of new countermeasures. Here we provide an overview of the state of the art of knowledge gained in the last 2 years about the virus and COVID-19, including its origin and natural reservoir hosts, viral etiology, epidemiology, modes of transmission, clinical manifestations, pathophysiology, diagnosis, treatment, prevention, emerging variants, and vaccines, highlighting important differences from previously known highly pathogenic coronaviruses. We also discuss selected key discoveries from each topic and underline the gaps of knowledge for future investigations.


Asunto(s)
COVID-19 , Pandemias , China/epidemiología , Humanos , Pandemias/prevención & control , Salud Pública , SARS-CoV-2
4.
PLoS One ; 17(5): e0268340, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1841156

RESUMEN

Continued waves, new variants, and limited vaccine deployment mean that SARS-CoV-2 tests remain vital to constrain the coronavirus disease 2019 (COVID-19) pandemic. Affordable, point-of-care (PoC) tests allow rapid screening in non-medical settings. Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) is an appealing approach. A crucial step is to optimize testing in low/medium resource settings. Here, we optimized RT-LAMP for SARS-CoV-2 and human ß-actin, and tested clinical samples in multiple countries. "TTTT" linker primers did not improve performance, and while guanidine hydrochloride, betaine and/or Igepal-CA-630 enhanced detection of synthetic RNA, only the latter two improved direct assays on nasopharygeal samples. With extracted clinical RNA, a 20 min RT-LAMP assay was essentially as sensitive as RT-PCR. With raw Canadian nasopharygeal samples, sensitivity was 100% (95% CI: 67.6% - 100%) for those with RT-qPCR Ct values ≤ 25, and 80% (95% CI: 58.4% - 91.9%) for those with 25 < Ct ≤ 27.2. Highly infectious, high titer cases were also detected in Colombian and Ecuadorian labs. We further demonstrate the utility of replacing thermocyclers with a portable PoC device (FluoroPLUM). These combined PoC molecular and hardware tools may help to limit community transmission of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Canadá , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Sistemas de Atención de Punto , ARN Viral/análisis , ARN Viral/genética , SARS-CoV-2/genética , Sensibilidad y Especificidad
5.
Nat Chem Biol ; 18(4): 356-358, 2022 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1784003
6.
ACS Sens ; 7(3): 806-815, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1730255

RESUMEN

The COVID-19 pandemic has emphasized the importance of widespread testing to control the spread of infectious diseases. The rapid development, scale-up, and deployment of viral and antibody detection methods since the beginning of the pandemic have greatly increased testing capacity. Desirable attributes of detection methods are low product costs, self-administered protocols, and the ability to be mailed in sealed envelopes for the safe analysis and subsequent logging to public health databases. Herein, such a platform is demonstrated with a screen-printed, inductor-capacitor (LC) resonator as a transducer and a toehold switch coupled with cell-free expression as the biological selective recognition element. In the presence of the N-gene from SARS-CoV-2, the toehold switch relaxes, protease enzyme is expressed, and it degrades a gelatin switch that ultimately shifts the resonant frequency of the planar resonant sensor. The gelatin switch resonator (GSR) can be analyzed through a sealed envelope allowing for assessment without the need for careful sample handling with personal protective equipment or the need for workup with other reagents. The toehold switch used in this sensor demonstrated selectivity to SARS-CoV-2 virus over three seasonal coronaviruses and SARS-CoV-1, with a limit of detection of 100 copies/µL. The functionality of the platform and assessment in a sealed envelope with an automated scanner is shown with overnight shipment, and further improvements are discussed to increase signal stability and further simplify user protocols toward a mail-in platform.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Pandemias , Servicios Postales , SARS-CoV-2/genética
7.
Nat Commun ; 12(1): 724, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1387326

RESUMEN

Recent advances in cell-free synthetic biology have given rise to gene circuit-based sensors with the potential to provide decentralized and low-cost molecular diagnostics. However, it remains a challenge to deliver this sensing capacity into the hands of users in a practical manner. Here, we leverage the glucose meter, one of the most widely available point-of-care sensing devices, to serve as a universal reader for these decentralized diagnostics. We describe a molecular translator that can convert the activation of conventional gene circuit-based sensors into a glucose output that can be read by off-the-shelf glucose meters. We show the development of new glucogenic reporter systems, multiplexed reporter outputs and detection of nucleic acid targets down to the low attomolar range. Using this glucose-meter interface, we demonstrate the detection of a small-molecule analyte; sample-to-result diagnostics for typhoid, paratyphoid A/B; and show the potential for pandemic response with nucleic acid sensors for SARS-CoV-2.


Asunto(s)
Técnicas Biosensibles/métodos , Redes Reguladoras de Genes/genética , Glucosa/análisis , Ácidos Nucleicos/análisis , Sistemas de Atención de Punto , Pruebas en el Punto de Atención , Técnicas Biosensibles/instrumentación , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/virología , Glucosa/metabolismo , Humanos , Ácidos Nucleicos/genética , Pandemias , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Fiebre Tifoidea/sangre , Fiebre Tifoidea/diagnóstico , Fiebre Tifoidea/microbiología
8.
BMC Biol ; 18(1): 153, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: covidwho-895003

RESUMEN

The global spread of SARS-CoV-2 has shaken our health care and economic systems, prompting re-evaluation of long-held views on how best to deliver care. This is especially the case for our global diagnostic strategy. While current laboratory-based centralized RT-qPCR will continue to serve as a gold standard diagnostic into the foreseeable future, the shortcomings of our dependence on this method have been laid bare. It is now clear that a robust diagnostics pandemic response strategy, like any disaster planning, must include adaptive, diverse and de-centralized solutions. Here we look at how the COVID-19 pandemic, and previous outbreaks, have set the stage for a new innovative phase in diagnostics and a re-thinking of pandemic preparedness.


Asunto(s)
Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Infecciones por Coronavirus/epidemiología , Brotes de Enfermedades , Humanos , Tamizaje Masivo , Pandemias , Neumonía Viral/epidemiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2
9.
ACS Infect Dis ; 6(9): 2319-2336, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: covidwho-714245

RESUMEN

In December 2019, a novel beta (ß) coronavirus eventually named SARS-CoV-2 emerged in Wuhan, Hubei province, China, causing an outbreak of severe and even fatal pneumonia in humans. The virus has spread very rapidly to many countries across the world, resulting in the World Health Organization (WHO) to declare a pandemic on March 11, 2020. Clinically, the diagnosis of this unprecedented illness, called coronavirus disease-2019 (COVID-19), becomes difficult because it shares many symptoms with other respiratory pathogens, including influenza and parainfluenza viruses. Therefore, laboratory diagnosis is crucial for the clinical management of patients and the implementation of disease control strategies to contain SARS-CoV-2 at clinical and population level. Here, we summarize the main clinical and imaging findings of COVID-19 patients and discuss the advances, features, advantages, and limitations of different laboratory methods used for SARS-CoV-2 diagnosis.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , COVID-19 , Prueba de COVID-19 , Infecciones por Coronavirus/virología , Humanos , Microscopía Electrónica , Pandemias , Neumonía Viral/virología , Reacción en Cadena de la Polimerasa/métodos , SARS-CoV-2 , Análisis de Secuencia , Pruebas Serológicas/métodos , Manejo de Especímenes/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA